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The manned Mars mission is discussed i n  terms 
of the propulsive velocity requirements of t he  m i s -  
s ion j  the Earth entry ve loc i t ies  associated with 
short mission t r i p  times; and reentry vehicle l i f t -  
drag-ratio requirements for Earth atmospheric 
braking and landing. 

A survey of the recent l i t e r a tu re  reveals t ha t  
t o t a l  propulsive ve loc i t ies  of about 64,000 fps are 
required f o r  the so-called short (400-500 day) mis-  
sions u t i l i z ing  the  o r b i t a l  rendezvous concept in 
the  most favorable launch period, 1970-72. The 
l eas t  favorable period of 1978-80 requires about 
92,000 fps  f o r  the  all-propulsive mission mode. 
Util izing aerodynamic braking on Earth return 
reduces these values of propulsive velocity t o  
38,000 fps and 49,000 fps, respectively. 
t he r  reduction i s  obtained by the use of the atmos- 
pheric braking mode at  both Earth and Mars. 
t h i s  case, the  propulsive velocity requirement i s  
26,000 fps and 34,000 fps, respectively. 

A fur- 

In 

The mission times associated with these veloc- 
i t y  requirements vary s l igh t ly  with the  launch 
year. Minimum t o t a l  propulsive velocity require- 
ments f o r  the  shor t  t r i p s  generally occur fo r  m i s -  
sion times of 400 t o  500 Earth days. 
times, of the  order of 900 t o  1,000 days, require 
minimum propulsive ve loc i t ies  of 20,000 t o  
40,000 fps ,  depending on the  mission mode assumed. 
Earth entry ve loc i t ies  were found t o  vary from 
about 46,000 fps  t o  73,000 f p s  fo r  the  short  t r i p s .  
For the  long t r i p s ,  reentry ve loc i t ies  as low as 
38,000 fps  are. a t ta inable .  

h n g  t r i p  

Since a survey of reentry vehicle system 
weights indicated t h a t  atmospheric braking is f a r  
superior t o  rocket braking, an analysis was  con- 
ducted t o  investigate the  f l i g h t  mechanics and 
stagnation point heating associated with Earth 
entry at these high speeds. Corridor widths much 
smaller than those f o r  the Apollo mission m u s t  be 
accepted i f  a p i t ch  modulation capabili ty is not 
available.  Vehicles capable of the pitch modula- 
t i on  maneuver f o r  peak g reduction are shown t o  
require s ignif icant ly  lower LID than vehicles 
capable of the  roll-control maneuver only. 
lower L/D results i n  a reduction i n  the  convec- 
t i v e  and rad ia t ive  stagnation point heating rates 
and loads encountered during reentry.  
longitudinal ranging capabili ty appears t o  be avail-  
able t o  both the  modulated and m o d u l a t e d  entry 
vehicles. 

This 

Adequate 

A - ~ - r H U Q .  
Introduction 

A t  the  present time we are i n  the early plan- 
ning stage of manned f l i g h t  t o  another planet,  t he  
Planet Mars. 
eas i e s t  of a l l  planetary landing missions and per- 
haps the most important since Mars is more similar 

The Mars landing missjon is the 

in nature t o  the Earth than any of the other planets 
of th i s  so l a r  system. It must be our purpose t o  
define the  most a t t r ac t ive  mission prof i les  in 
accord with the  national resources which be 
available f o r  such a mission. 

Many preliminary studies have been in i t i a t ed  
both within the NASA organization and by industry. 
A s  pointed out i n  these studies,  the  major techni- 
c a l  problems t o  be resolved include such diverse 
areas as communications, long-term l i f e  support i n  
space, guidance and navigation, meteoroid protec- 
t ion ,  so la r  radiation protection, propulsion, and 
high-speed entry in to  planetary atmospheres. The 
most sensit ive parameters affecting the  basic m i s -  
s ion have been defined and optimization procedures 
developed t o  minimize the t o t a l  propulsion energy 
requirements of t he  manned Mars mission. 

This mission is primarily influenced by two 
factors:  
about the  Sun and the angularity of t he  Mars orbi- 
tal plane with respect t o  the plane of the eclip- 
t i c .  Minimum energy missions obviously occur fo r  
t ransfer  when Mars is  near the nodal point and a l so  
near perihelion. Maximum energy missions occur f o r  
m a x i m u m  t ransfer  plane angle changes when Mars is  
near aphelion. 
cycle is approximately 15 years, the  energy require- 
ments are cyclic in nature. 

the  eccentricity of t he  Martian o rb i t  

Since the  period of the  Earth-Mars 

It i s  the  purpose of t h i s  paper t o  present a 
survey of the  energy requirements of the  manned Mars 
mission and t o  analyze the reentry f l i gh t  mechanics 
on return t o  the Earth 's  atmosphere. Mars a r r iva l  
velocit ies a re  discussed but the  f l i g h t  mechanics 
associated with entry in to  the Martian atmosphere 
were not considered. Several current studies of  
t h i s  problem fo r  a var ie ty  of assumed Martian atmos- 
pheres are i n  progress elsewhere. 

The results of the Early Manned Interplanetary 
Mission studies,  t he  Manned Mars Landing and Return 
Mission studies,  and the Manned Planetary Mission 
Technology Conference as well as those of other 
m i s s i o n  studiesl-10 were included i n  the  present 
l i t e r a tu re  survey. These studies consider both 
chemical and nuclear propulsion systems f o r  launches 
i n  the 1968 t o  1984 period, which covers the en t i r e  
Earth-Mars cycle. In t h i s  paper, the primary empha- 
sis i s  placed on studies of the  short t r i p  mission n 

in i t ia ted  from a near Earth o rb i t .  

I n  the study of Earth entry f l i gh t  mechanics 
no particular vehicle was investigated. A t  t h i s  
ear ly  stage it appears more reasonable t o  concen- 
t r a t e  on defining the  basic reentry vehicle char- 
ac te r i s t ics ,  tha t  i s ,  the range of vehicle l i f t -  
drag ratio which w i l l  be required f o r  a safe entry 
as well as the  desired atmospheric maneuvers. A 
preiiminary assessmenL of the heating problem i s  
given in terms of the  stagnation point heating 
loads. 

*Aerospace Engineer, Mission Analysis Group, 
Aero-Physics Division. 



It'has been demonstrated tha t  vehicles capable 
of the pitch modulation technique a re  advantageous 
i n  terms of reduction of both convective and radia- 
t i v e  stagnation point heating ra tes  and heating 
loads. Also, this maneuver i s  required only i n  the 
region of the undershoot boundary and would not 
necessarily be required for the nominal or mldcor- 
r idor  entry condition. Thus, it seems reasonable 
t o  consider this maneuver as a desirable feature 
for Earth entry vehicle systems although fur ther  
study i s  necessary i n  the area of t o t a l  body heat 
loads and thermal protection system requirements for 
this type of maneuver before any def in i te  conclu- 
sions may be drawn. 

Finally, it appears that means of reducing the 
high heating ra tes  and loads occurring at hyperbolic 
entry veloci t ies  need t o  be studied. Combined aero- 
dynamic and propulsive braking may offer  some advan- 
tages although Yoshikawa and Wick1$ indicate that 
vehicle shape optimization and ablation material 
development may be a more e f f ic ien t  method. 

Optimum Nose Radius 

It i s  a simple matter t o  define an optimum 
vehicle nose radius based on stagnation point 
heat ingloads since the  convective t o t a l  heat load 
i s  related t o  the  vehicle nose radius by the propor- 

t i o n a l i t y  a 1 and the radlative heat load by 
& 

a %. The optimum nose radius i s  then the nose 
radius for which minimum t o t a l  heat loads are  
obtained. It i s  assumed t h a t  the reentry t ra jec-  
to ry  i s  independent of the nose radius of the 
reentry vehicle. The sum of the undershoot boundary 
radiative heating loads and the overshoot boundary 
convective heating loads was used t o  optimize the 
reentry vehicle nose radius for vehicles capable of 
a 10-mile reentry corridor. These optimum nose 
r a d i i  are presented i n  f igure 21. 
ment with the  work of Sei f f l3  and also Bobbitt.l? 
Radiative heating is  shown t o  become the  dominant 
heating mode a t  entry veloci t ies  i n  excess of about 
50,000 fps. It i s  in te res t ing  t o  note t h a t  the 
optimum nose radius i s  only s l igh t ly  different  for 
vehicles with p i tch  modulation capability. 

This i s  i n  agree- 

The t o t a l  stagnation point heat loads associ- 
ated with the optimum nose r a d i i  of Fig. 21 a re  pre- 
sented i n  Fig. 22 for vehicles with a 10-mile entry 
corridor capability. 
reentry vehicles capable of the p i tch  modulation 
technique over vehicles capable of only roll angle 
modulation i s  obvious from t h i s  figure. 
68,000 fps, the highest velocity for which the 
unmodulated vehicle i s  capable of providing a 
10-mile corridor, the mdulated vehicle heat load 
i s  only one-fifth that of the  unmodulated vehicle. 

Range Capabilitx 

The marked superiority of 

A t  

The ranging capabi l i t ies  of  both the  modulated 
and modula ted  vehicles have been evaluated since 
control of the landing point i s  a desirable char- 
a c t e r i s t i c  for  any reentry vehicle system. The 
efficiency of the vehicle insofar as  range con- 
t r o l  i s  concerned is strongly dependent on the 
sophistication of the  system. The a b i l i t y  of the 
reentry vehicle t o  f l y  d i f f i c u l t  maneuvers involving 
exact control of the vehicle and perhaps both roll 
and pitch angle variation i s  important. The 

discussions thus f a r  have been based on the require- 
ment of safe entry only, regardless of landing s i t e .  
It i s  desirable t o  have a reentry vehicle which i s  
a t  l e a s t  capable of zero range overlap. T h a t  i s ,  
the minimum range traversed on the  overshoot tra- 
jectory i s  equal t o  the maximan range traversed on 
the undershoot t ra jectory.  
approaches the atmosphere i n  the  correct plane and 
at the  correct time, a landing at the desired point 
may be effected. 

LID 

Then, i f  the vehicle 

The e f fec ts  of entry velocity and vehicle 
capabi l i ty  on the longitudinal range overlap are  
presented i n  Fig. 23 for  the unmodulated and modu- 
l a t e d  entry techniques. The dashed l i n e s  indicate 
the range overlap capability of the  minimum Vehicle 
with a 10-mile reentry corridor capability. Range 
overlap increases with entry veloci ty  and s ignif i -  
cant values are  obtained for t h e  unmodulated case. 
Note the unusual resu l t  for modulated entry Of 
decreasing range overlap with increasing LID capa- 
b i l i t y .  
all t h e i r  L/D capabi l i ty  for use i n  peak g 
reduction. Since LID < 1 is all tha t  i s  required 
to achieve safe entry for this maneuver, the high 
LID results may be neglected. Also, posi t ive 
range overlap occurs only at t h e  higher entry veloc- 
i t i e s  and i s  quite small. However, for entry veloc- 
i t i e s  i n  excess of 45,000 fps  the  p i tch  modulation 
entry maneuYer i s  at l e a s t  acceptable from the 
range standpoint. 
t h a t  additional range overlap capabi l i ty  may be 
expected by providing the pi tch modulated entry 
vehicle with a slight excess of 

These resu l t s  a re  for vehicles requiring 

It should be pointed out, however, 

LID. 

Lateral range capabi l i t ies  are  not considered 
here since the  l a t e r a l  range capabi l i ty  of these 
vehicles would probably be greater  than the longi- 
tudinal  overlap capability. 

Concluding Remarks 

The mission studies surveyed i n  this paper have 
shown t h a t  the  propulsive veloci ty  requirements f o r  
the manned Mars mission a re  strongly dependent on 
mission time and launch year. The short t r i p  m i s -  
sions, desirable from the standpoint of life-support 
system and r e l i a b i l i t y  requirements, require about 
400 t o  500 days t r i p  time. The Earth entry veloc- 
i t i e s  associated with these missions vary from 
45,000 fps t o  75,000 fps depending on the launch 
period. A survey of reentry vehicle system weights 
indicated a s ignif icant  weight saving by u t i l i z i n g  
aerodynamic braking rather  than propulsive braking 
a t  Earth. 

For t h e  range of Earth entry ve loc i t ies  con- 
sidered, an analysis was performed t o  evaluate the 
minimum reentry vehicle LID requirements. A rea- 
sonable reentry corridor width of 10 miles was 
chosen t o  define the minimum LID requirement. It 
w a s  shown that safe entry a t  ve loc i t ies  greater  
than about 68,000 fps  w a s  avai lable  only t o  vehi- 
c l e s  with an LID capabi l i ty  i n  excess of three 
for vehicles capable of roll control only. The use 
of the pi tch modulation technique for peak g 
a l lev ia t ion  and reentry corridor width increase was 
shown t o  require a maximum vehicle LID of 0.75 at 
an entry veloci ty  of 75,000 f p s .  The pi tch  modula- 
t i o n  maneuver resul ted i n  lower heat loads than did 
the unmodulated maneuver for the  minimum entry 
vehicle. 



A signif icant  point indicated by t h i s  figure is 
that i f  the Manned Mars Mission i s  funded and a 
launch date in the  mid 1970's selected, the mission 
must be designed on the bas i s  of the maximm require- 
ments of the 1979-80 period t o  allow f o r  any sched- 
ule  slippage. I f  t h i s  i s  not done the  mission might 
have t o  be canceled u n t i l  7 years l a t e r .  However, 
i f  the ear ly  or mid 1980's were chosen as the launch 
period, the mission could be based on the  velocity 
requirements for t h a t  par t icular  launch period. For 
several years thereafter the  mission could be car- 
r ied out with a lower propulsive velocity require- 
ment. Therefore, it may be desirable t o  se t  our 
s ights  on a 1984 mission rather  than a 1976 mission. 

Figs. 3 and 4 indicate a s ignif icant  reduc- 
t i o n  in propulsion requirements i f  atmospheric 
braking is  used on Earth return. This, of course, 
requires tha t  the  reentry vehicle be capable of 
entry into the Earth's atmosphere at hyperbolic 
veloci t ies .  As i s  t o  be expected, both mission 
t h e  and launch period have a considerable effect  
on the Earth entry veloci t ies .  Fig. 5 presents 
the effect  of t r i p  time on the  Earth and Mars entry 
veloci t ies  f o r  the 1970-n and 1979-80 missions 8s 

calctiiated by f i i p p  and ~0la.1 The resu l t s  pre- 
sented are  f o r  a 4O-w s tey  at &rs and minimized 
t o t a l  propulsive veloci ty  requirements. Relatively 
low entry ve loc i t ies  are obtained f o r  the  long t r i p s  
where atmospheric braking I s  used at both Earth and 
Mars. Thus, l i t t l e  o r  no increase i n  reentry vehi- 
c le  technology beyond t h a t  f o r  Apollo would be 
required f o r  these missions. For the  short t r i p s ,  
o w  prime area of in te res t ,  the  Earth entry veloc- 
i t i e s  vary from a minimum of 46,ooO f p s  f o r  the  
1970-71mission t o  a minimum of 63,000 f p s  for the 
1979-80 mission assuming atmospheric braking at both 
Earth and Mars. I f  the propulsive braking mode is 
used at Mars, these entry veloci t ies  increase t o  
48,500 f p s  and 67,500 f p s ,  respectively. This 
increase is due t o  the optimization process by 
which the minimum t o t a l  propulsive velocity require- 
ments are  defihed. 

A comparison of Figs. 3 and 5 demonstrates 
tha t  the mission times associated with minimum pro- 
pulsive veloci ty  requirements do not coincide with 
e i ther  minimum Earth or Mars entry veloci t ies .  
Since minimum propulsive velocity i s  an optimal mis- 
sion objective, the  short t r i p  mission time m u s t  be 
between 4OO and 500 days. Although the Earth entry 
veloci t ies  are  only s l i g h t l y  increased, the Mars 
entry veloci t ies  may be increased considerably by 
t h i s  res t r ic t ion .  
19,500 fps  t o  36,000 f p s  m u s t  therefore be con- 
sidered i f  atmospheric braking at Mars i s  t o  be a 
mission requirement. These veloci t ies  do not appear 
t o  be overly severe when compared t o  the Earth entry 
s i tuat ion.  
t iga tors ,  the  presence of a large percentage of 
carbon dioxide in the Martian atmosphere results i n  
high radiat ive heating at moderate entry veloci t ies .  
This is primfrily due t o  t h e  formation of cyanogen 
in the  hot gas cap. Before any specif ic  entry vehi- 
c le  concept f o r  entry in to  the  Mars atmosphere is 
possible a much more exact def ini t ion of the prop- 
e r t i e s  of the  Martian atmosphere w i l l  be required. 

Mars entry ve loc i t ies  of 

However, as pointed out by many inves- 

A more def in i t ive  idea of t h e  mx3nnm Earth 
entry ve loc i t ies  with which we m u s t  be concerned is  
presented i n  Fig. 6 f o r  the short t r i p  class of 
mission. 
the 1970-71mission and ms;ximum veloc i t ies  occur 
for  the 1978-79 launching. 

Minimum Earth entry ve loc i t ies  occur f o r  

These mission studies 

indicate that entry veloci t ies  as high 8s 'j3,000 fps 
must be considered. 
o r  HO- t ra jec tor ies  (-37,000 f p s ) ,  are not 
shown. Based on t h i s  figure, an entry velocity 
range of 37,000 fps t o  75,000 fps m s  chosen t o  be 
studied i n  the reentry f l i g h t  mechanics section of 
t h i s  paper i n  order t o  include a l l  reasonable manned 
Mars missions. 

The values for  the  long t r i p ,  

Vehicle Weight Requirements 

No survey of the  manned Mars mission could be 
considered complete without a consideration of the 
vehicle weight requirements f o r  such a mission. 
Both chemical and nuclear propulsion systems have 
been considered in many mission s tudies .  Electr ic  
propulsion has generally not been considered since 
it is  believed t o  be only marginal f o r  the ear ly  
Mars mission. 

Due t o  the many different  ground rules  s e t  up 
by Mars mission investigators, no clear-cut band of 
datamay be presented as t o  the  vehicle weights 
required in Earth orb i t  t o  complete the manned Mars 
mission. 
and crew l i f e  support requirements is needed, f o r  
instance. 
c r i t i c a l  importance since a pound saved here i s  
worth from 10 t o  100 pounds on the o r b i t a l  launch 
vehicle. 

A bet te r  def ini t ion of optimum crew s ize  

Weight of the  Earth entry vehicle is of 

The mission studies surveyed indicate tha t  
chemical propulsion systems with several million 
pounds i n  Earth orbi t  a re  capable of only the  most 
marginal Mars missions. Reasonable missions are 
available f o r  nuclear systems with weights i n  orb i t  
of about 1 t o  1.5 million pounds. 
missions, the chemical system weights may be greater  
than the nuclear system weights by a fac tor  of f ive  
o r  m o r e .  

For comparable 

Reentry Vehicle Weight s 

The reduction of t o t a l  mission propulsion 
velocity requirements by the use of atmospheric 
braking, while advantageous, i s  obtained only a t  
the  expense of increased reentry vehicle thermal 
protection requirements. To r e a l i z e  any reduction 
i n  launch-vehicle weight the increased heat-shield 
weights must be somewhat lees  than the  propulsion 
system weights which would otherwise be used. I n  
Fig. 7 the r a t i o  of the reentry vehicle weight 
for entry at escape speed t o  the reentry vehicle 
weight with the additional thermal protection 
required f o r  entry at any higher speed is  presented 
i n  terms of Earth entry velocity. 
braking were considered, aerodynamic and propulsive. 
The band of results f o r  the vehicles u t i l i z i n g  aero- 
dynamic braking were obtained from a survey of the  
literature.*-ll The upper region of the band is 
composed of vehicles with L/D capabi l i t ies  of 
about 112 t o  1 and re la t ive ly  pointed noses. 
lower region is composed of low LID bodies (0 t o  
1/2) with re la t ive ly  blunted noses. 

Two types of 

The 

For the  propulsive braking band, specif ic  
impulses of 300 t o  900 seconds were considered. A 
specific impulse of 300 seconds represents a reason- 
able value of a s torable  chemical propellant and a 
specific impulse of 9 0  seconds represents a very 
good nuclear system capabi l i ty .  

Thus, the  use of aerodynamic braking on Earth 
return i s  most advantageous throughout the velocity 

3 



range considered. 
velocity which might be expected, the most e f f i c i en t  
propulsive vehicle must weigh a t  least three times 
as much as the most e f f i c i en t  aerodynamic vehicle. 
This, of course, assumes tha t  t he  aerodynamic and 
propulsive vehicles have equivalent weights for 
entry a t  escape speed. 

A t  75,000 f p s ,  the maximum entry 

Since 1 pound saved on the reentry vehicle can 
be worth from 10  t o  100 pounds on the o r b i t a l  
launch vehicle, a weight saving of the magnitude 
indicated by Fig. 7 is quite  significant.  Atmos- 
pheric braking on Earth return therefore appears t o  
be a basic requirement of the manned Mars mission. 
However, it i s  obvious from the spread of the data  
t h a t  much fur ther  work i s  necessary in t he  area of 
reentry vehicle design. 

Reentry Fl ight  Mechanics 

Reentry Maneuvers 

It is the purpose of this section of t he  paper 
t o  define t h e  reentry f l i g h t  mechanics and stagna- 
t i o n  point heat loads fo r  entry in to  the  atmosphere 
on Earth return from a manned Mars mission. The 
maneuvers considered here a r e  shown i n  Fig. 8. For 
maximum ranges and maximum heating the  vehicle is 
considered t o  f l y  a posi t ive LID t ra jec tory  from 
entry to pullout. A t  that point, negative l i f t  i s  
applied by the roll-control mode t o  maintain con- 
stant al t i tude u n t i l  suff ic ient  l i f t  can no longer 
be  generated t o  maintain t h a t  a l t i t ude .  
rium glide is then flown t o  impact. The minimum 
range maneuver is a constant g, roll-controlled 
maneuver i n i t i a t e d  a t  the maximum g point j u s t  
p r i o r  to pullout. 

An equilib- 

Two basic  reentry modes were considered: one 
requiring a vehicle capable of roll angle modula- 
t i o n  only and the  other requiring a vehicle capable 
of both roll angle modulation and pi tch angle modu- 
la t ion.  The pi tch modulation technique is used only 
f o r  peak g al leviat ion t o  achieve increased 
reentry corridor width capability as suggested by 
Becker.12 

T h i s  technique, when i n i t i a t e d  a t  high entry 
veloci t ies ,  usually required a pullup t o  a higher 
a l t i t ude  as shown by the lower sketch of Fig. 8. 
I n  t h i s  case the  vehicle angle of a t tack i s  modu- 
la ted  towards tha t  fo r  zero l i f t  u n t i l  peak dynamic 
pressure is reached, the vehicle then is rol led 180' 
and the angle of a t tack increased t o  maintain the  
same constant g loading. Negative l i f t  i s  thus 
obtained t o  hold the vehicle i n  the  atmosphere and 
allow a constant a l t i t ude  f l i g h t  path t o  be flown 
from the second pullout.  

In t he  present analysis, t he  Earth is assumed 
t o  be spherical and nonrotating and reentry i s  
in i t i a t ed  at an a l t i t ude  of 400,000 f ee t .  The 
overshoot boundary i s  defined as tha t  entry at pos- 
i t i v e  L I D  f o r  which the vehicle can j u s t  maintain 
a constant a l t i t ude  f l i g h t  path a t  t he  bottom of 
t h e  pullup u t i l i z ing  i t s  full negative LID capa- 
b i l i t y .  The undershoot boundary i s  defined a6 t h a t  
entry for  which the maximum deceleration loads do 
not exceed 12g. 

The results were obtained by machine calcula- 
t ion  f o r  the  region from entry t o  pullout and by 
analytic methods from pullout t o  landing. 

Limiting Entry Velocity 

It is well known that an increase in reentry 
veloci ty  r e su l t s  i n  a decreased reentry corridor 
f o r  a specific vehicle. This i s  simply due t o  t h e  
f a c t  t h a t  t he  vehicle must d ip  deeper in to  t h e  
atmosphere t o  prevent skipping although high decel- 
erat ion loads are encountered at higher a l t i t udes .  
For a given vehicle, t he  overshoot i n i t i a l  entry 
angle must increase fo r  increased entry velocity 
and the undershoot i n i t i a l  entry angle must decrease 
as i s  indicated by the sketch i n  Fig. 9. Since the  
boundaries approach each other, t he  overshoot bound- 
a ry  deceleration loads must increase with increasing 
entry velocity.  A s  shown by t h i s  f igure,  these 
deceleration loads may be s ignif icant ly  reduced by 
increasing the  vehicle LID capability. However, 
even a vehicle with i n f i n i t e  L/D capabi l i ty  would 
have a 7.5g maximum load at t h e  overshoot boundary 
f o r  entry at 75,000 f p s ,  the maximum considered 
here fo r  t he  manned Mars mission. Therefore, 
high g loads are a basic  requirement for the  
atmospheric braking mission mode. 
prolonged weightlessness on the crew's tolerance t o  
deceleration loadings must be defined and, i f  nec- 
essary, a centrifuge included i n  the mission module 
t o  maintain crew effectiveness i n  g tolerance. 
I f  the undershoot boundary i s  based on man's toler-  
ance t o  high deceleration loadings, it becomes 
apparent that the overshoot boundary maximum decel- 
erat ion loads may exceed the chosen l i m i t s .  Thus, 
some entry velocity ex i s t s  fo r  which the overshoot 
and undershoot boundaries coincide. This i s  the 
point of zero corridor width and i s  defined as t h e  
l imit ing entry velocity. 

The e f fec ts  of 

The l imit ing entry ve loc i t ies  associated with 
various l eve l s  of deceleration loading are  pre- 
sented i n  Fig.  10 i n  terms of  vehicle LID capa- 
b i l i t y .  B a l l i s t i c  vehicles are completely inade- 
quate fo r  entry a t  ve loc i t ies  much i n  excess of 
40,000 fps.  Even a vehicle with an LID capabi l i ty  
of 1/2 would exceed 12g fo r  entry at  speeds i n  
excess of 69,500 fps.  
bas i s  of the 1979-80 mission would require an 
capabi l i ty  of about 0.7 as the minimum possible 
value f o r  a 12g undershoot boundary and zero corr i -  
dor width. To achieve any s ignif icant  corridor 
width, a much higher value of LID would be 
required. Thus, vehicles capable of r o l l  control 
only, which enter  the atmosphere i n i t i a l l y  with 
posi t ive lift, may require L/D capabi l i t i es  f a r  
i n  excess of 0.7. 

A vehicle designed on the 
LID 

Corridor Width 

On the bas i s  of guidance and control  consider- 
a t ions an Earth entry corr idor  width of about 
10 m i l e s  i s  required on return from the  manned Mars 
mission. It is of in t e re s t ,  however, t o  consider 
t he  general e f f ec t  of entry mode and vehicle LID 
on the corridor width capabi l i ty  of entry vehicles. 
A s  sham i n  Fig. 11 qui te  sophisticated vehicles 
may be required t o  achieve s ignif icant  corridor 
widths based on a 12g undershoot boundary unless 
p i tch  modulation i s  used f o r  peak g reduction. 
With p i tch  modulation capabi l i ty  a reentry vehicle 
with LID < 1 is capable of achieving a 10-mile 
corridor on return from a Mars mission i n  the worst 
launch period. This, compared t o  the  unmodulated 
case requiring 
modulation capabi l i ty  i s  necessary unless cor- 
r idor  widths of t he  order of 5 miles or l e s s  may be 
accepted f o r  t he  present boundary def ini t ions.  

LID > 3 ,  indicates  that a p i tch  



Fig. 1 2  gives an indication of the LID capa- 
b i l i t y  required f o r  the manned Mars mission for sev- 
eral corridor widths. For missions i n  the low- 
energy period, 1970-7l (VE - 45,000 fps),  a 10-mile 
corridor i s  available t o  a low LID vehicle vith- 
out t he  use of p i tch  modulation. This requirement 
rapidly increases i f  increased corridor widths are 
de sired.  

For missions i n  the  1978-79 period 
(VE zz 75,000 fps)  p i tch  modulation i s  required t o  
achieve a 10-mile corridor.  Note that the L ID  
requirement i s  not high, only about a value of 0.75. 
Also of i n t e re s t  i s  t he  1984 mission. I n  this case 
the reentry veloci ty  is about 53,000 f p s  requiring 
a vehicle LID capabi l i ty  of 0.62, unmodulated, o r  
0.31, modulated. Suff ic ient ly  wide reentry corri-  
dors are thus available t o  vehicles with f a i r l y  low 
LID 
Mars missions but p i tch  modulation capability i s  
required i f  t he  mission i s  t o  occur near the high- 
energy period. It is realized of course, t ha t  some 
increase i n  veloci ty  and LID requirements i s  nec- 
essary t o  provide fo r  a reasonable launch window. 

Aerodynamic Heat iw 

capabi l i t i es  fo r  t he  low and middle energy 

Since the  aerodynamic heating i s  a major factor  
i n  reentry vehicle design, the r e l a t ive  heating has 
been analyzed f o r  the two reentry modes which have 
been examlned. For the purpose of t h i s  paper, it 
w a s  not considered desirable t o  r e s t r i c t  t he  analy- 
sis t o  any par t icular  reentry configuration or  heat- 
shield material. Thus, a l l  heating comparisons are 
based on the  stagnation point heat rates and loads. 

It i s  w e l l  known that the radiat ive heating 
rate diminishes more rapidly than the convective 
heating r a t e  along any contour l i n e  moving away 
from the stagnation point.  Therefore the apparent 
dominance of radiat ive heating obtained here would 
be lessened i f  t he  en t i r e  body were considered. 
is f e l t  however, that for  a preliminary def ini t ion 
of t h e  heating penalty associated w i t h  atmospheric 
braking on Earth return from a manned Mars mission, 
the stagnation point heating rates and heating 
loads should be suff ic ient .  I n  the  present analysis 
the e f f e c t s  of nonequilibrium radiat ion have been 
neglected. Seiff ,13 i n  his analysis of b a l l i s t i c  
entry at high speeds, indicates  t ha t  t he  nonequilib- 
rium radiat ive heating i s  s m a l l  i n  comparison t o  the 
equilibrium radiat ive heating. 

It 

Obviously, maximum stagnation point heating 
rates occur at t h e  undershoot boundary. 
convective heating rates are presented i n  Fig. lJ 
fo r  both the modulated and unmodulated entr ies .  A s  
shown, use of the pi tch modulated entry mode r e su l t s  
i n  large increases i n  the  maximum convective heating 
rates f o r  entry at  the  same velocity. This would 
seem t o  preclude use of the p i tch  modulated entry 
maneuver. However, the difference i n  LID required 
by the  two modes of operation, f o r  the same corridor 
width, completely changes this conclusion. In  f a c t ,  
lower stagnation point convective heating r a t e s  a r e  
obtcdned for t h e  p i tch  modulated entry vehicle than 
f o r  t he  unmodulated entry vehicle with an equiva- 
l e n t  corridor as may be seen from Figs. 12 and 13. 

The maximum radiat ive heating r a t e s  are shown 

The maximum 

i n  Fig. 14 t o  increase much more rapidly w i t h  
increasing entry veloci ty  than do the convective 
r a t e s .  The use of p i tch  modulation may r e su l t  i n  

large increases i n  t h e  maximum radiative heating 
rates,  depending on the vehicle LID capabili ty.  
Comparing the radiat ive heating rates i n  terms of 
equivalent corridor widths fo r  the two entry modes 
indicates t ha t  a reduction i n  maximum heating rate 
is obtained by use of vehicles with pi tch modula- 
t i on  capability. 

Perhaps more s ignif icant  than a comparison of 
t he  heating rates i s  a comparison of the stagnation 
point t o t a l  heat loads. The convective t o t a l  heat 
loads are presented i n  Figs. 15 and 16 fo r  en t r ies  
at the overshoot and undershoot boundaries. Entry 
at the undershoot boundary u t i l i z i n g  p i tch  modula- 
t i on  r e s u l t s  i n  lower convective heat loads than 
fo r  the unmodulated maneuver. This i s  primarily 
due to  the f ac t  t ha t  t he  p i t c h  modulated en t r ies  
dive deeper in to  the  atmosphere and p u l l  out at  sig- 
nif icant ly  lower a l t i tudes  than do the unmodulated 
entries.  The convective heating load obtained 
during a constant a l t i tude  f l i gh t  i s  proportional t o  
the inverse of the square root of the atmospheric 
density. Since most of t he  convective heating 
occurs during the constant a l t i t ude  f l i gh t ,  minimum 
heat loads occur fo r  those en t r i e s  with the  lowest 
pullout a l t i t udes ,  t h e  p i tch  modulated entry cases. 
Maximum convective heating loads are obtained for 
entry a t  the overshoot boundary where the vehicles 
maneuver at maximum a l t i tudes  and minimum atmos- 
pheric densi t ies .  Since the p i tch  modulated 
entr ies  require less LID and lower al t i tudes,  
lower maximum convective heating loads a re  obtained 
with this maneuver f o r  vehicles with a reentry cor- 
r idor width of 10 miles as shown i n  Fig. 17. The 
resul ts  of t h i s  f igure demonstrate the effective- 
ness of vehicles with pi tch modulation capabi l i ty  
i n  stagnation point convective heat load reduction. 
I n  addition, increasing vehicle LID capability i s  
generally a t ta ined only at the expense of exposing 
larger surface areas t o  high heating r a t e s  and 
loads. Thus, a l l  heaticg comparisons based on the  
stagnation point r e su l t s  should be conservative 
from t h e  standpoint of demonstrating the effective- 
ness of the p i tch  modulation maneuver. 

For a given value of LID, the equilibrium 
radiative stagnation point heat loads presented i n  
Figs. 18 and 19 indicate  a somewhat different  
result than that obtained f o r  convective heating 
loads. 
a t  the undershoot boundary rather than at the  over- 
shoot boundary. The use of pi tch modulation 
resul ts  i n  large increases i n  the undershoot heat 
losd, f o r  a given entry velocity. Radiative 
heating i s  much more strongly dependent on the 
atmospheric density and entry velocity than i s  con- 
vective heating. Also, the radiative heating i s  
direct ly  proportional t o  the  density f o r  the con- 
stant a l t i t u d e  maneuver. Thus, entry a t  the under- 
shoot boundary with i t s  lower pullout a l t i tudes  
resul ts  i n  greater  radiat ive heating loads. 

That is, maximum radiative heating occurs 

A comparison of t h e  unmodulated and modulated 
entry vehicles on t h e  bas i s  of equal corridor 
widths of 10 miles i n  terms of maximum undershoot 
radiative heating i s  indicated i n  Fig. 20. The 
rat io  of the modulated heat loads t o  t h e  unmodu- 
lated heat loads would be about t he  same as f o r  the 
convective heating loads. I n  the  radiative heating 
case, the stagnation point heating loads may not be 
as conservative as i n  the  case of convective 
heating but should s t i l l  be valid.  



Mars Mission Characteristics 

Mission Profile 

The manned Mars mission may be accomplished by 
any of several modes of operation. The concept pre- 
dominantly considered i n  the studies which were sur- 
veyed i s  the  Mars orb i ta l  rendezvous mode. 
mode of operation i s  the  only one considered i n  t h i s  
paper, and consists of a t  most four dominant i m p u l -  
sive periods: 
deceleration in to  a Mars c i rcu lar  parking orbi t ;  
launch from the Mars orbi t  ; and deceleration in to  a 
near Earth ci rcular  parking orb i t .  Any Mars landing 
mission is  assumed t o  take place from Mars orbi t  and 
thus does not affect  the velocity requirements of 
the  main o r b i t a l  vehicle. 

This 

launch from a near Earth orb i t ;  

True minimum energy missions involve the so- 
cal led Hohmann t ransfer  e l l ipse  shown i n  Fig. 1. 
In t h i s  case the perihelion of the  t ransfer  e l l i p s e  
occurs a t  the Earth and the aphelion at Mars. 
heliocentric angles of 180' must be traversed on 
both the outbound and inbound legs of the mission. 
In  order f o r  the two planets t o  be i n  the correct 
position f o r  i n i t i a t i o n  of the  return t ra jectory,  
the  space vehicle must remain i n  the v ic in i ty  of 
Mars for 450 Earth days. 
times of 900 t o  1,000 Earth days are  required f o r  
the  minimum energy mission. This may not be desir-  
able from life support system and r e l i a b i l i t y  con- 
siderations as well as  consideration of psychologi- 
c a l  factors affecting the crew. Thus the primary 
emphasis at the present time is being placed on the 
"short t r i p "  mission shown i n  Fig. 2. 

Thus, 

Therefore, t o t a l  mission 

This reduction i n  t o t a l  mission time t o  400 t o  
500 days  is  accomplished by allowing one leg of the  
m i s s i o n  t o  pass inside of the Earth's o rb i t .  
Indeed, the  space vehicle may pass within 1/2 a .  u. 
o r  less  of the Sun f o r  some missions. I n  general, 
in order t o  optimize the  energy requirements, the 
inbound l e g  o f t h e  mission is  the short leg of the  
mission. This i s  due t o  the lower weights which 
m u s t  be accelerated t o  the higher veloci t ies  asso- 
c ia ted with t ra jec tor ies  passing inside the  Earth 's  
o rb i t .  

Of course t h e  penalties associated with the  
short t r i p  are  evidenced i n  increased propulsive 
energy requirements. This necessitates larger  vehi- 
c les  at Earth and gives rise t o  many novel mission 
concepts such as convoys of vehicles, supply vehi- 
c l e s  preceding t h e  manned vehicles, and hyperbolic 
rendezvous and crew t ransfer  t o  a reentry vehicle on 
Earth return. 

Velocity Requlrements 

It is necessary t o  define the  propulsive veloc- 
i t y  increments required t o  carry out the  mission in 
order t o  determine the e f fec ts  of launch year and 
t r i p  time on the mission energy requirements. 
and %la1 investigated the 1970-71 and 1979-80 m i s -  
sions, corresponding t o  the best and worst years 
for a Mars mission in that cycle. 
s ive  velocity Increments f o r  t h e i r  optimized m i s -  
sions are shown i n  Fig. 3. The curves shown are 
f o r  three types of missions i n i t i a t e d  from a circu- 
lar orbit about the  Earth. These are: all propul- 
s ive missions; Earth atmospheric braking missions; 
and Earth and Mars atmospheric braking missions. 
The f i r s t  c lass  of mission uses propulsive braking 
at Earth and Mars and therefore requires no advance 

Knipp 

The t o t a l  propul- 

i n  reentry vehicle technology beyond Mercury o r  
Gemini vehicles. Use of the second and t h i r d  
classes of missions requires s ignif icant  advances 
i n  reentry vehicle technology beyond t h a t  of Apollo. 
As shown i n  Fig. 3 ,  there  are two d is t inc t  mini- 
mum energy points f o r  each mission which.are sepa- 
rated by a region of excessively high-energy 
requirements. The "long t r i p "  minimum occurs at 
about an 850-day mission f o r  a 40-day s tay at Mars. 
True minimum energy requirements are obtained for 
a 450-w stay  at Mars and a t o t a l  mission time of 
about 950 days as indicated by the near H O h m a n n  
t ransfer  points. The short t r i p  minimum energy 
missions occur a t  t r i p  times of about 
500 d a y s  depending on t h e  year and type of  mission. 

t o  

The use of atmospheric braking yields great 
savings i n  propulsion velocity requirements at the  
expense, however, of increased heat-shield weights. 
For instance, a decrease i n  propulsive velocity 
requirement from 63,000 f p s  t o  36,500 f p s  is  
obtained by using atmospheric braking on Earth 
return f o r  the  1970-71mission. 
vehicle would enter  the Martian atmosphere at re la-  
t i v e l y  low veloci t ies ,  a smaller additional saving 
(about 1O,O0O f p s )  is  available by using atmospheric 
braking a t  M m s  as w e l l  as a t  Earth. 

Since the space 

-The 1979-80 mission i s  shown t o  require much 
higher propulsive ve loc i t ies  than the 1970-71 m i s -  
sion since the  distance and plane angle change i s  
a maximum a t  tha t  t i m e .  For the all-propulsive 
mission, t h i s  difference i n  velocity requirement i s  
some x),OOO f p s .  The ef fec t  of launch year is 
great ly  reduced however, i f  atmospheric braking i s  
u t i l i zed  on Earth return.  

A s ignif icant  penalty in  propulsive velocity 
requirement i s  associated with going t o  shorter  
t r i p  times from e i t h e r  of the minimum points. 
Therefore, ear ly  manned Mars missions w i l l  probably 
be r e s t r i c t e d  t o  t o t a l  mission times of e i ther  400 
t o  500 days or 9 0  t o  1,000 days. 

The resu l t s  of Fig. 3 are  presented f o r  stay 
times at Mars of 40 days and 450 days only. 
e f fec t  of the  s tay time a t  Mars d i f fe rs  f o r  the  
short and long t r i p s .  For short t r i p s  the propul- 
s ive veloci ty  requirement generally increases with 
increasing s tay  time. For long t r i p s ,  a 300- t o  
450-day s tay  time resu l t s  i n  minimum velocity 
requirements. 

The 

Having considered the e f fec ts  of mission or  
t r i p  time on the propulsive velocity requirements, 
it is  desirable t o  look more closely a t  the e f fec ts  
of launch year. The resu l t s  of the l i t e r a t u r e  Sur- 
veyl-10 are presented i n  Fig. 4 for  launch years 
from 1967 t o  1986. Each symbol represents a spe- 
c i f i c  mission which has been optimized t o  some 
extent. Note that the  use of atmospheric braking 
a t  Earth and at Mars reduces the e f fec ts  of launch 
year s igni f icant ly  as well as s h i f t s  the  maxima and 
minima towards t h e  e a r l i e r  launch years. For the  
all-propulsive mode, the  veloci ty  requirement var ies  
from about 64,000 f p s  f o r  the best  launch year t o  
about 95,000 4 s  f o r  the  worst. 
pheric braking at Earth resu l t s  i n  a var ia t ion in  
veloci ty  requirement Kith launch year by about 
ll,ooO f p s .  
t o  about 8,000 f p s ,  i s  afforded by u t i l i z i n g  atmos- 
pheric braking at both Earth and Mars. 

The use of atmos- 

A -her reduction i n  t h i s  var ia t ion 



Only small range overlap was available t o  the 
minimum entry vehicle using pi tch modulation. 
ever, zero range overlap occurred at an entry veloc- 
i t y  of 45,000 f p s ,  indicating that the p i tch  modula- 
t ion  maneuver is acceptable f o r  entry a t  veloci t ies  
i n  excess of t h i s  value. 

How- 

On the  bas i s  of t h i s  study it appears t h a t  the 
pi tch modulation maneuver is a desirable maneuver 
f o r  reentry at the ve loc i t ies  associated with Earth 
return from a short t r i p  manned Mar! mission. This 
maneuver requires further study, especial ly  as  t o  
the t o t a l  body heating since this study of stagna- 
t i o n  point heating gives only a broad indication of 
the  t o t a l  heating picture. 
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The following correction should be made t o  f igure 13: 

I n  the key f o r  ident i f ica t ion  o f t h e  curves, the so l id  l i n e  should be 
labeled "Unmodulated" and the  dashed l ine  should be labeled "Modulated. " 
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